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Abstract. The phase spaces T*GL'(3, R )  and T*SL(3, R ) ,  which underlie the dynamics 
of certain models of collective motion, are reduced with respect to the symmetry group of 
spatial rotations. It is shown that the resulting reduced phase spaces are generated by the 
orbits of Hamiltonian group actions of the groups GCM(3) = M"(3) @ GL'(3, R)  or 
CM(3) = M'(3) @ SL(3, W) on the cotangent bundles. 

Generalised phase spaces have become very powerful tools in understanding properties 
of dynamical systems [ l ,  21. On the other hand it has been well known since the early 
days of quantum mechanics that the canonical structure of phase space provides a 
link between classical mechanics and quantum mechanics which some time ago was 
reformulated in the so-called geometric quantisation. This method is also useful for 
understanding models of collective motion [3,4]. These systems of collective motion, 
which we are going to consider, will be assumed to be invariant with respect to rotations 
in space. Consequently we will be able to reduce the number of degrees of freedom 
by constructing reduced phase spaces using the Kostant-Souriau-Sternberg reduction 
procedure. 

The notation which will be used in this paper is somewhat different from that which 
is customary in differential geometry. Let x denote elements of the manifold. Vector 
fields will be denoted by symbols like 6x, 6'x (cf [ 5 ] ) .  If the manifold has the structure 
of a Lie group vector fields can be mapped into the tangent space at the neutral element 
e by left or right multiplication. The image of a vector field 6a will be denoted by 
S'a = K ' S a  or by S'a = ( 6 a ) a - ' .  

We will only be interested in Lie groups which are subgroups of the general linear 
group GL( N, W )  for some finite N (whereby in physics N = 3). Here a dual pairing 
of tangent spaces is given by 

(A,  B)  = Tr A'B (1) 

where A and B are elements of the real linear space M( N )  of N x N matrices and A' 
denotes the transpose of the matrix A. The pairing will be used to define an explicit 
representation of differential forms on linear groups [6]. For Lie subgroups of GL( N, W )  
the Lie algebra is represented by linear subspaces of M( N ) .  The dual space according 
to the pairing (1) consists of classes of matrices which are linear submanifolds of 
M ( N ) .  Indeed matrices which belong to the same class differ by an element of the 
annihilator of the Lie algebra. It is convenient to denote a class by a certain element 
of the corresponding submanifold. 
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Proposition 1. Let G be a linear group, gl its Lie algebra of left-invariant vector fields 
and gr  the dual space of left-invariant linear forms. The cotangent bundle T*G is 
homeomorphic to G x g: . Let x = (a,  p )  denote a point of the cotangent bundle. Then 
its canonical 1-form is given by 

O(Sx) = Tr p'Sa' Sa'Eg, PEg: 

(+(ax, S'x) =Tr((S"a)'Sp - (S 'p) 'Sa ' -p ' [S 'a l ,  Sal]).  

and the corresponding symplectic form is 

(2)  

Similarly if one uses the Lie algebra of right-invariant fields g,, its dual space g: and 
coordinates (a ,  A )  one obtains 

O(Sx) = Tr A'Sa' Sa'€ g, A Eg: 

and the symplectic form is given by 

~ ( S X ,  S'x) =Tr((S'a')'SA -(6'A)'6ar+A'[6'a', Sar]). (3) 

The proof of this proposition is an immediate consequence of the notation. Note that 
if appropriate representatives of the matrices p and A are chosen, they are related by 
A = -(  pa'. In the case of the rigid body the pair (a, p )  is related to body coordinates 
and the pair (a, A )  to space coordinates. 

Both right multiplications a + aA-' and left multiplications a + Aa extend to 
Hamiltonian actions on the cotangent bundle. They are 

(a ,  p )  + (aA-I, (A-') 'pA') or ( u , A ) + ( u A - ' , A )  (4) 

and 

(0 ,  P )  + (Aa,  P )  or (a, A ) +  (a, (A')-lAA') ( 5 )  

respectively and they induce moment maps [ 11: 

Jr(a, P )  = P  J ~ ( u ,  A )  = A (6) 

respectively. 
The phase space of a system of several particles whose dynamics are restricted to 

collective rotations and collective oscillations is represented by the cotangent bundle 
T*GL+(3, W )  of the general linear group with positive determinant. If additionally 
the volume is assumed to be constant ('incompressible fluid') the basic group becomes 
SL(3,W) (cf [3]). This can be shown in an elementary way. One demands that the 
motion of all particles is restricted to one of these groups according to the physical 
situation one wants to consider. 

The following is an immediate consequence of the direct product structure of the 
cotangent bundle of an arbitrary Lie group. Let us assume that the dynamical system 
remains invariant with respect to those Hamiltonian transformations which are induced 
by left actions of the group on itself. Then the reciprocal image of the fixed momentum 
of this action is spanned by orbits of Hamiltonian transformations which are induced 
by right actions of the group on itself. Consequently the reduced phase space which 
corresponds to this symmetry is given by the image of the moment map of this action 
[I] .  Of course all this is also true, if the words 'right' and 'left' are exchanged. 
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This reduction applies in particular to the model of the free rigid body. The basic 
group is the orthogonal group SO(3, R) and the system also remains invariant under 
rotations of space, i.e. under left actions of SO(3, R) on itself. For elastic bodies the 
situation is different. The symmetry group is still the rotation group acting on the 
cotangent bundle by left multiplications but the Lie group of the phase space is 
GL'(3, R) or SL(3, R), i.e. the symmetry group is a subgroup of the basic Lie group. 
The momentum mapping of this symmetry group can be chosen to be 

J ( u ,  A )  = X =;(A -,it) (7) 
where we have taken advantage of the above-mentioned freedom, that the representative 
matrices of the image of the momentum mapping can be chosen such that arbitrary 
elements of the annihilator can still be added. Here in three dimensions corresponds 
to the vector of angular momentum. 

Let us assume that X is a regular value of the momentum mapping, so that the 
inverse image MX of is a manifold. Of course for each point of the inverse image 
the orbit of right actions of the whole group GL'(3,R) (or SL(3,R)), which passes 
this point, is contained in the inverse image. It is not, however, &he whole level set 
since points of the cotangent bundle, whose coordinates A differ only by symmetric 
matrices, are mapped to the same angular momentum. It will be shown shortly that 
these symmetric matrices can be combined with the whole group, such that the inverse 
image of fixed angular momentum becomes the orbit of a Hamiltonian transformation 
group on the cotangent bundle. 

Let s be an arbitrary element of the linear space M'( N )  ( N  = 3) of symmetric 
matrices. The transformations 

s + ( B ' ) - l s B - '  =: Bs 

f y ( a )  := Tr W(a') - ' sa- '  

B E GL+( N, R) 

define a linear representation of the general linear group. Define functions 

W E  M'(N)  

on GL+(N, R) (cf [3]). Right action of the group on itself implies 

( (r*- l )*f ,")(a)  =f,"(4 =f,w, (a) .  (8) 
Being pulled back to the cotangent bundle these functions define Hamiltonian vector 
fields 

6x = (Sa, 6 p )  = (0, -2sa-I w ( a t ) - ' )  

( a ,  p )  -, ( a ,  p - Sa-' W (  a t ) - ' ) .  

which integrate to actions of the Abelian group M'( N )  

( 9 )  
Combining this group action with the extended right action leads to a Hamiltonian 
action of a semidirect product group: 

GCM( N )  := M"( N )  @ GL+( N, R) 

with multiplication law 

( S , A ) ( T ,  B ) = ( S + ( A ' ) - l T A - l , A B )  

on the cotangent bundle. We call GCM(3) the generalised collective motion group. 
Its action on T*GL(3, R) is explicitly given by 

(10) 

S, T E M' ( N )  ; A, B E GL+( N, R) 

( S ,  A ) ( a ,  p )  = ( a A - ' ,  (A' ) - 'pA'-SAa- '  W ( a ' ) - ' A t ) .  

Note that relation (8) is crucial for defining this semidirect product action (cf [3]). 
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Proposition 2. Let : T*GL+(3, R)  + so(3, R)* denote the moment map which corre- 
sponds to left actions of the rotation group on the cotangent bundle of the general 
linear group, and let A. be an element of the image. The inverse image of the moment 
map is spanned by the free Hamiltonian group action of GCM(3) through the point 
(a ,  p )  = (e, -Ao)  ( e  denotes the neutral element of the group). In (a ,  p )  coordinates 
this orbit is given by 

( S ,  A)(e, -io) = (A-',  -(A')-'i,A'-SAA') A e G L t ( 3 , R ) ;  SE  M'(3). (11) 

Relation (11) is a special case of (10) in which W is equal to the unit matrix. That 
this is a necessary condition follows from the fact that the actions of GCM(3) and of 
the rotation group must commute. It follows immediately from the relation between 
right-invariant momentum A and left-invariant momentum p that the orbit is mapped 
by the moment map to io. That the action is free follows by direct computation. 

Considered as a submanifold of the cotangent bundle the inverse image of fixed 
angular momentum is not yet a reduced phase space, since the reduced canonical 
2-form is degenerate. From general theorems it follows that the kernel of this presym- 
plectic form coincides with the kernel of the moment map of the symmetry group, i.e. 
of the rotation group. Basically this allows us to construct the reduced phase space. 
But here also, as in the well known model of the rigid body, everything becomes more 
explicit if use is made of the fact that level sets of constant angular momentum coincide 
with orbits of a certain group of Hamiltonian transformations on the phase space and 
that again the moment map can be applied. 

Proposition 3. Let gcm(3) be the Lie algebra of the generalised collective motion group 
and gcm(3)* its dual space, the elements of which are represented by pairs 

m = ( v , P )  v E M'(3) P E M(3). 

J ' : ( a , p ) + m  = ( v , ~ ) = ( t ( a ' a ) - ' , p ) .  (12) 

The moment map of the action GCM(3) on the cotangent bundle is given by 

There is a theorem (Kostant-Souriau theorem) (cf [ l ,  5,7])  which states that by 
the moment map orbits of canonical transformation groups are mapped onto orbits 
of the coadjoint action in the dual space of the Lie algebra (up to a certain first 
cohomology class which in our case vanishes). 

For calculating orbits of the coadjoint action it is helpful to represent GCM(3) as 
a subgroup of Sp(6, R) setting 

A E  GL(3, R); S E  M'(3). 

In particular, this means that the collective motion group is a subgroup of the linear 
group and we can apply again those techniques which are described in [6]. Elements 
of the Lie algebra gcm(3) are represented by 

Using the dual pairing (1) for linear groups the elements of gcm(3)* are represented by 

m = ( t  ) p ~ M ( 3 ) ; v ~ M ' ( ( 3 )  
-5tJ 
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and we obtain for the coadjoint representation 

ad&A)( v, p )  = (AvA', (A' ) - 'pA'-  SAVA'). 

Incidentally a comparison of ( 1 1 )  and (14) shows us that the momentum mapping is 
indeed equivariant. 

There are essentially two types of orbits. For io # 0 the isotropy group at (fZ, -io) 
( I  = unit matrix) is the group SO(2) of those orthogonal transformations which leave 
io invariant. The dimension of the reduced phase space is 15 - 1 = 14. For io = 0 the 
isotropy group at ( iZ,O) is isomorphic to SO(3) and the dimension of the reduced 
phase space is 15 - 3 = 12. 

On the coadjoint orbits of GCM(3) the symplectic form is obtained from 

dam,  8") = ( m ,  [S (A ,  SI, S ' ( 4  S)l) (15 )  
where ( , ) means the dual pairing and 6(A ,  S ) ,  S'(A, S )  are tangent vectors. They 
will be characterised by elements of the Lie algebra gcm(3). The letter m denotes an 
element of gcm(3)*. This leads to 

(16) 
In the case of the so-called liquid-drop model with phase space T*SL(3) the group 

GCM(3) has to be substituted by the collective motion group CM(3)= 
M'(3) 0 SL(3, W) .  This group can also be represented by (13). In the Lie algebra 
tangent vectors of SL(3, R) are represented by traceless matrices and the same can be 
done by left-invariant and right-invariant momenta. Therefore we substitute 

a( Sm, S 'm)  = Tr( AA'( 76' - 7'6) - (Ap& + AA's) [  (,('I). 

p -fI Tr-, p Z = unit matrix. 

The Hamiltonian action CM(3) on T"SL(3, W )  is given by 

( S ,  A ) ( a ,  p )  = (aA- ' ,  (A')-'pA'- SA(a'a)-'A'+fZ Tr SA(a'a)-'A') 

and the corresponding moment map is again given by (12), namely by 

J': (a ,  p )  + (v, p )  = (+ (u ta ) - ' ,  p ) .  

The coadjoint representation is 

ad&A,(v, p )  = (AvA', (A' ) -1pA'-2SAvA'+~Z Tr(SAvA'). (18) 
The actions of these mappings differ from those of the elastic body insofar as CM(3) 
no longer acts freely. At the point ( e ,  po) the isotropy group of the CM(3) action is 
given by pairs ( I ,  sZ) with real parameter s. On the other hand, at m = (41, -Ao) the 
isotropy group consists of pairs (SI, r )  where r denotes those rotations which leave A. 
fixed. This group is isomorphic to R x SO(2). 

Apart from this difference everything is analogous to the situation described above. 
Surfaces of constant angular momentum are again spanned by orbits of CM(3). Note 
that the kernel of the Hamiltonian action on the phase space coincides with the 
non-compact part of the isotropy group of the coadjoint action. 

In some articles the group CM(3) has been compared with a similar semidirect 
product which has been constructed from the rotation group SO(3) and the linear 
space of traceless symmetric matrices M33).  This group is related to the rigid body. 
The action of this rigid body group, sometimes called RB(3), is transitive on the phase 
space T*S0(3). This is a situation which is different from that of non-rigid bodies, 
for here the group RB(3) does not generate reduced phase spaces. In fact it represents 
the complete phase space T*S0(3) as a homogeneous space. 
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The construction of reduced phase spaces can be a preliminary step in solving the 
problem to quantise a Hamiltonian system. Here it is a special advantage if these 
reduced phase spaces are spanned by certain group actions, for it opens the possibility 
of quantising the system by constructing unitary representations of groups (cf [SI). 
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